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Bubbles and filaments: Stirring a Cahn-Hilliard fluid
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The advective Cahn-Hilliard equation describes the competing processes of stirring and separation in a

two-phase fluid. Intuition suggests that bubbles will form on a certain scale, and previous studies of Cahn-
Hilliard dynamics seem to suggest the presence of one dominant length scale. However, the Cahn-Hilliard
phase-separation mechanism contains a hyperdiffusion term and we show that, by stirring the mixture at a
sufficiently large amplitude, we excite the diffusion and overwhelm the segregation to create a homogeneous
liquid. At intermediate amplitudes we see regions of bubbles coexisting with regions of hyperdiffusive fila-

ments. Thus, the problem possesses two dominant length scales, associated with the bubbles and filaments. For
simplicity, we use a chaotic flow that mimics turbulent stirring at large Prandtl number. We compare our results
with the case of variable mobility, in which growth of bubble size is dominated by interfacial rather than bulk

effects, and find qualitatively similar results.
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I. INTRODUCTION

In a seminal paper, Cahn and Hilliard [1] introduced their
eponymous equation to model the dynamics of phase sepa-
ration. They pictured a binary alloy in a mixed state, cooling
below a critical temperature. This state is unstable to small
perturbations so that fluctuations cause the alloy to separate
into bubbles (or domains) rich in one material or the other. A
small transition layer separates the bubbles. Because the evo-
lution of the concentration field is an order parameter equa-
tion, this description is completely general. Thus, by cou-
pling the phase-separation model to fluid equations, one has
a broad description of binary fluid flow encompassing poly-
mers, immiscible binary fluids with interfacial tension, and
glasses.

In industrial applications, the components of a binary
mixture often need to be mixed in a homogeneous state. In
that case, the coarsening tendency of multiphase fluids is
undesirable. In this paper we will examine how a stirring
flow affects this mixing process. We are interested in stirring
not just to limit bubble growth, as is often effected with shear
flows, but to break up the bubbles into a homogeneous mix-
ture.

We first outline previous work for three increasing levels
of complexity: Cahn-Hilliard (CH) in the absence of flow,
passive CH with flow, and active CH with flow. Our focus in
this paper will be on the passive case.

Cahn-Hilliard fluids without flow: There is a substantial
literature that treats of the CH equation without flow. For a
review, see [2]. The main physical feature of this simpler
model is the existence of a single length scale (the bubble or
domain size) such that quantities of interest (e.g., the corre-
lation function) are self-similar under this scale. This length
grows in time as #'?, a result seen in many numerical simu-
lations (see, for example, Zhu er al. [3]). Of mathematical
interest are the existence of a Lyapunov functional, and
hence of a bounded solution [4], and the failure of the maxi-
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mum principle owing to fourth-order derivatives in the equa-
tion for the concentration field [5,6].

Passive Cahn-Hilliard fluids: Given an externally im-
posed flow (e.g., a shear flow, turbulence, or a stirring mo-
tion), we have a passive tracer equation for a Cahn-Hilliard
(CH) fluid. In the same way that one invokes the mixing of
coffee and cream to picture the mechanisms at work in the
advection-diffusion equation, this is the chef’s problem of
how to mix olive oil and soy sauce by stirring.

There have been several studies of the (active and pas-
sive) shear-driven CH fluid [7,8]. In these studies, it is
claimed that domain elongation persists in a direction that
asymptotically aligns with the flow direction, while domain
formation is arrested in a direction perpendicular to this axis.
This seems to be confirmed in the experiments of Hashimoto
[9], although these results could be due to finite-size effects
[10], in which the arrest of domain growth is due to the
limitation of the boundary on domain size. Of interest is the
existence or otherwise of an arrest scale and the dependence
of this scale on the system parameters.

A more effective form of stirring involves chaotic flows,
in which neighboring particle trajectories separate exponen-
tially in time, leading to chaotic advection [11]. The average
rate of separation is the Lyapunov exponent, positive for
such a flow [12,13]. One may also regard this exponent as
the average rate of strain of the flow. By imposing a chaotic
flow on the CH fluid, finite-size effects are easily overcome.
This is because the shear direction changes in time, so that
domain elongtation in one particular direction, leading to an
eventual steady state in which domains touch many walls, is
no longer possible. Berthier et al. [14] investigated the pas-
sive stirring of the CH fluid and observed a coarsening arrest
arising from a dynamical balance of surface tension and ad-
vection. The stirring by the chaotic flow destroys large-scale
structures, and this is balanced by the domain-forming ten-
dency of the CH equation. A balancing scale is identified
with the equilibrium domain size.

The importance of exponential stretching is amplified by
the results of Lacasta et al. [15], in which a passive turbulent
flow endowed with a tunable amplitude, correlation length,
and correlation time, causes both arrest and indefinite
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growth, in different limits. We explain this heuristically as
follows: In one limit of turbulent flow (small Prandtl
number), the correlation length of the turbulent velocity
field is small compared to the typical bubble size, fluid
particles diffuse [16], and bubble radii evolve as dRﬁ/ dt
=2 ks+[Cahn-Hilliard contribution], where Ry, is the bubble
radius and k. is the effective tracer diffusivity. Because
Keir>>0, the presence of diffusion fails to arrest bubble
growth. In the limit of large Prandtl number however, the
correlation length is large and the velocity field gives rise to
exponential separation of trajectories, so that the radius equa-
tion is dRy/dt=—2\Rp+[Cahn-Hilliard contribution], where
\ is the average rate of strain, or Lyapunov exponent, of the
flow. Thus, the exponential stretching due to stirring balances
the bubble growth. Lacasta er al. [15] identify a critical cor-
relation length above which coarsening arrest always takes
place, no matter how small the stirring amplitude. Since cha-
otic flows typically exhibit long-range correlations, we ex-
pect they will always produce coarsening arrest.

Active Cahn-Hilliard fluids: At the highest level of com-
plexity, one considers the reaction of the mixture on the flow
by coupling the CH equation to the Navier-Stokes equations.
For a derivation of the Navier-Stokes Cahn-Hilliard equa-
tions, see [17]. In experiments involving turbulent binary
fluids near the critical temperature, it is found that a turbulent
flow suppresses phase separation and homogenizes the fluid
[18,19]. However, by cooling the fluid further and maintain-
ing the same level of forcing, phase separation is achieved.
This result is limited to near-critical fluids, although it does
suggest the possibility of homogenization by stirring in other
contexts.

The most recent work on the CH fluid (Berti et al., [20])
focuses on the active CH tracer. They couple the CH concen-
tration field to an externally forced velocity field and observe
coarsening arrest independently of finite-size effects. They
identify a balance of local shears and surface tension as the
mechanism for coarsening arrest. Thus, the chaotic advection
discussed above is a sufficient condition for coarsening ar-
rest, but not a necessary one since shear will suffice. Of
interest again is the dependence of the arrest scale on the
mean rate of shear.

With this literature in mind, we study the case of a chaotic
flow coupled passively to the CH equation. Our ultimate fo-
cus will be on the breakup of bubbles by stirring, and not just
coarsening arrest. We believe this aspect of CH flow de-
serves a further and more complete study, as it is a regime of
particular relevance to industry, for example, in droplet
breakup or in the mixing of polymers [21].

Berthier et al. [14] used an alternating sine flow to study
coarsening arrest. Because of its simplicity, the sine flow is a
popular testbed for studying chaotic mixing [22-26]. In con-
trast to Berthier et al. [14], we use a sine flow where the
phase is randomized at each period (see Sec. III), leading to
a flow that has a positive Lyapunov exponent at all stirring
amplitudes and for all initial conditions. This avoids the co-
existence of regular and chaotic regions, which would lead to
inhomeogeneous mixing characteristics over the domain of
the problem. Because of its uniform stirring, the random-
phase sine flow is often used as a proxy for turbulent stirring
at high Prandtl number, but at much lower computational
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cost. Using this flow, we study coarsening arrest, as in pre-
vious papers [14,20]. However, we shall also use it to study
mixing due to the stirring and the hyperdiffusion of the CH
dynamics. Under this additional process the scaling hypoth-
esis that characterizes the dynamics of bubble formation,
namely that there is one dominant length scale [2,20], breaks
down.

Following studies first made by Batchelor on the
advection-diffusion equation [27] and by Neufeld on
reaction-diffusion equations [24], we introduce a one-
dimensional equation in order to model the formation of
bubbles and the influence of advection and hyperdiffusion on
the bubble size. This will lead to an understanding of the
mechanism by which the bubbles are broken up and hyper-
diffusion becomes dominant.

The paper is laid out in the following way. In Sec. II we
introduce the CH equation with advection and discuss its
scaling laws. In Sec. III we present some numerical simula-
tions of the two-dimensional equations, with and without
flow, and confirm the scaling laws. In Sec. IV we make use
of the one-dimensional CH equation coupled to a straining
flow to understand the results from the two-dimensional
simulations. In Sec. V we investigate numerically the two-
dimensional CH equation with variable mobility.

II. THE MODEL EQUATION AND ITS SCALING LAWS

In this section we introduce the advective Cahn-Hilliard
equation in n dimensions. We then discuss the notion of dy-
namical equilibrium for the CH equation without flow in
terms of the structure function. Finally, we study the length
scales that arise in the presence of flow.

Let c(x,7) be the conserved order parameter of the prob-
lem and let v(x,?) be an externally imposed two-dimensional
incompressible flow, V-v=0. The advective Cahn-Hilliard
equation describes the phase separation dynamics of the field
c(x,1) in the presence of flow,

J
;j +v-Ve=DV(fi(c) - yV*¢), (1a)

fole)=5(c2=1)% (1b)

This equation characterizes the stirring of a phase-separating
binary liquid. Here D is the (constant) mobility, which gov-
erns the rate of phase separation, and 7 is a hyperdiffusion
coefficient. The fourth-order hyperdiffusion term in Eq. (1)
has a mollifying effect that prevents the blow up of gradi-
ents. By identifying a chemical potential u=f;(c)-yV2c, Eq.
(1) is recast as follows:

17
§+v-Vc=DV2,u,. (2)

The form of Egs. (1) and (2) guarantees that the total con-
centration is conserved in the sense that d/dtfc(x,t)d"x
=0+[boundary terms]. We let V denote the problem domain
as well as the system volume.

The CH equation without flow exhibits dynamical equi-
librium in the following sense. Starting from a concentration

016216-2



BUBBLES AND FILAMENTS: STIRRING A CAHN-...

field fluctuating around the unstable equilibrium c(x,#)=0,
the late-time concentration field has properties that are time
independent when lengths are measured in units of typical
bubble size R,. Such properties include the structure function
[28] which we introduce below.

A measure of the correlation of concentration between
neighboring points, given in Fourier space, is the following:

S(k,r) = ‘l/f d"xf d'x' e c(x +x")c(x) = (c)*], (3)
1% v

where angle brackets denote the spatial average. We normal-
ize this function and compute its spherical average to obtain
the structure function

1 Sk,

0 ey i) -

(4)

The spherical average ¢(k) any function ¢(k) is defined

~ 1
#0= | a6, (5)
where d(), is the element of solid angle in n dimensions and
Q,, is its integral. Thus ¢ is the spherical average of the
Fourier coefficient ¢;. For a symmetric binary fluid {c)=0,
the structure function is simply the spherically averaged
power spectrum:

@, for (c)=0. (6)
2m)" (%)

s(k,t) =

The dominant length scale is identified with the reciprocal of
the most important k value, defined as the first moment of the
distribution s(k,1),

f ks(k,t)dk
0

kl = o . (7)
f s(k,t)dk
0

Since the system we study is isotropic except on scales com-
parable to the size of the problem domain, this length scale is
a measure of scale size in each spatial direction. That is, we
have lost no information in performing the spherical average
in Eq. (4). This length scale is in turn identified with the
bubble size: Ry*1/k;. In two-dimensional simulations
(n=2) it is found [3,28] that while k; and s(k,7) depend on
time, ks(k/k,,t) is a time-independent function with a single
sharp maximum, confirming that the system is in dynamical
equilibrium and that a dominant scale exists. Indeed, the
growth law R~ is obtained, in agreement with the
evaporation-condensation picture of phase separation pro-
posed by Lifshitz and Slyozov (LS exponent) [29].

We present some simple scaling arguments to reproduce
the ¢!/ scaling law and to illuminate the effect of flow. For
v=0, the equilibrium solution of Eq. (1) is c==1 in do-
mains, with small transition regions of width \y in between.
Across these transition regions, it can be shown [17] that
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uw=—Tk/2,
where
I'=v8y/9 (8)

is the surface tension and « is the radius of curvature. Thus,
if Ry, is a typical bubble size, that is, a length over which c is
constant, the chemical potential associated with the bubble is

Balancing terms in Eq. (2), it follows that the time 7 required
for a bubble to grow to a size Ry is 1/ t~FD/R,§, implying
the LS growth law R, ~ (I'D#)'3.

Now the CH free energy F[c] is the system energy owing
to the presence of bubbles:

F[c]:f d”x[i(c2—1)2+%y|Vc|2]. (10)
v

The surface tension I' is the free energy per unit area. A
bubble carries free energy FRﬁ_l, where prefactors due to
angular integration are omitted. The total free energy F[c] in
the motionless case is then I"R{’)_l X Ny, where N is the total
number of bubbles. Because the system is isotropic and be-
cause there is a well-defined bubble size, we estimate N, by
V/Ry. The free energy then has the scale dependence
F/V~T/R,, and using the growth law for the length R, we
obtain the asymptotic free energy relation

F 1“2 1/3
‘—/~<B> 173, (11)

By introducing the tracer variance
o?=(c?) = (c) (12)

and restricting to a symmetric mixture {¢)=0, we may iden-
tify o?=V,/V, where V,=N,R}. is the volume occupied by
bubbles. Since F=I'R{"'N,, it follows that

R, ~ o°/F. (13)

We shall verify these results in Sec. III. Equation (13) will
provide a useful measure of bubble size when a flow is im-
posed, since no assumption is made about the number of
bubbles per unit volume. In a dynamical scaling regime, the
length scales calculated from these energy considerations
must agree with that computed from the first moment of the
structure function, since there is only one length scale in
such a regime [30].

Stirring a CH fluid introduces new length scales. The flow
will alter the sharp power spectrum found above and so it
may not be possible to extract definite scales from experi-
ments or numerical simulations. We might expect further am-
biguity of scales during a regime change (crossover), for
example, as the bubbles are broken up and diffusion takes
over. Nevertheless, for a given flow it is possible to construct
length scales from the system parameters. We shall impose a
flow v(x,?) that is chaotic in the sense that nearby particle
trajectories separate exponentially in time at a mean rate
given by the Lyapunov exponent.
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If the advection and diffusion term and the surface tension
term have the same order of magnitude in a chaotic flow, by
balancing the terms v-Vc and DV2u we obtain a scale

Ry = (I'D/N)'3, (14)

where \ is the Lyapunov exponent of the flow. Because the
term v-Vc gives an exponential amplification of gradients,
the balance of segregation and hyperdiffusion in the term
u=fh(c)—yV*c may be broken and hyperdiffusion may over-
come segregration. This will happen on a scale R given by
the balance of the terms v-Vc and yVc,

Raie= (yDIN)'*. (15)

In this regime, we expect mixing owing to the presence of
the advection and the (hyper) diffusion. Using Egs. (8), (14),
and (15), the crossover between the bubbly and the diffusive
regimes takes place when A =D/ y. In the following sections
we shall examine these scales and look for this crossover
between bubbles and filaments, the latter being characteristic
of mixing by advection diffusion.

III. NUMERICAL SOLUTION
OF THE TWO-DIMENSIONAL PROBLEM

In order to run simulations at high resolution, we special-
ize to two dimensions. We solve Eq. (1) with and without
flow to investigate the scaling laws presented in the previous
section.

Equation (1) is integrated by an operator splitting tech-
nique, in which a specialized advective step followed by a
phase-separation step are performed at each iteration. The
phase separation step is the semi-implicit spectral algorithm
proposed by Zhu et al. [3] for the case without flow. The
semi-implicitness of the algorithm enables us to use a rea-
sonably large time step. We use the following velocity field,
defined on a (27) X (27) grid of 5122 points with periodic
boundary conditions,

v (x,y,0) = asin(y + ¢,), v,=0, nr<t<(n+3),

vy(x,y,0) = asin(x+ ¢,), v,=0, (n+%)rst<(n+1)7,
(16)

where ¢, and ¢, are phases that are randomized once during
each flow period 7 and the integer n labels the period. We set
7=1 and work in units where time is the number of periods.
We use Pierrehumbert’s lattice method for advection [22,25].
With the problem defined on a discrete grid, this method is
exact for the advection step. Using standard techniques
[12,13], we compute the Lyapunov exponent numerically
and find it is always positive and independent of initial con-
ditions, as expected for this flow. For the parameter regime
ae[0,1] we find

A~0.118a% a=<1, (17)

a result that we shall use in what follows. For sufficiently
large «, it is easy to show the exact asymptotic result
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A~In(3?), a>1. (18)

Furthermore, the correlation length for the velocity is of or-
der of the box size, which is the largest scale in the problem.
Therefore, using the prediction of Lacasta er al. [15], we
expect this velocity field to produce coarsening arrest even at
very small stirring amplitudes.

We integrate Eq. (1) in the manner explained above. The
initial conditions are chosen to represent the sudden cooling
of the binary fluid: Above a certain temperature 7, the ho-
mogeneous state ¢=0 is stable, while below this temperature
the mixture free energy changes character to become
}1(02— 1)?, which makes the homogeneous state unstable.
Thus, at temperatures 7> T, ¢(x)=0+[fluctuations], and the
sudden cooling of the system below 7 leaves the system in
this state. In order for the CH equation without thermal noise
(1) to describe the evolution of these initial conditions, the
cooling we have imposed must take the system to 7=0.
Thus, we are working in the so-called deep-quench limit.
With the initial conditions c(x,0)=0+[fluctuations], both
components of the fluid are present in equal amounts and the
spatial average of the concentration field is zero.

Although the case without flow has been investigated be-
fore [3,28], we reproduce it for two reasons. First, it serves
as a validation of our algorithm. Second, we shall confirm
the free energy laws (11) and (13) which to our knowledge
have not been examined before. Finding an appropriate mea-
sure of bubble growth will be important for understanding
the behavior of the bubbles when we introduce stirring.

The results of these simulations are presented in Fig. 1.
The scaling function k3s(k/k,,?) is approximately time inde-
pendent for 7>20 000 as evidenced by Fig. 1(b), implying
that the scaling exponents for k; and F are to be extracted
from the late-time data with #>20 000. For #>30 000 finite-
size effects spoil the scaling laws. Thus while the scaling
exponents are extracted from a small window, the fit is good
and this suggests that the power laws obtained give the true
time dependence of k; and F at late times. In this way we
recover the dynamical scaling regime in which k%s(k/ ki) is
time independent, in addition to the decay law k; ~ '3 [3].
Running the simulation repeatedly for an ensemble of ran-
dom initial conditions improves the accuracy of the expo-
nent. Furthermore we obtain the energy laws F~c,t/3, and
1 —02~c2t‘”3. Thus,

—=—_21/3~—1t1/3, for > 1 (19)

so that 0?/F, 1/F, and 1/k, all grow as t'/* and hence pro-
vide identical measures of scale growth, in agreement with
the classical assumption that there is a unique length scale in
the problem [2,3].

We investigate the stirred case in a similar manner and
obtain the results below, after =30 000 time steps. In order
to ensure that we are in a steady state, we study the inverse
lengths F and k, and the tracer variance o [see Eq. (12)]
which measures the homogeneity of the concentration
(6?=0 for a homogeneous mixture) [22,25]. These quantities
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FIG. 1. (Color online) (a) Concentration, at =30 000; (b) Struc-
ture function k%s(k/ ky,1) in the scaling regime =20 000; (c) Time
dependence of k;, with power law exponent close to the LS expo-
nent 1/3; (d) Free energy, F, exhibiting the time dependence
F~1032_ close to the LS exponent.
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FIG. 2. (Color online) (a) F vs t for (from bottom)
a=0,0.1,0.3,0.5,0.7,1.0; (b) k; vs ¢ for the same values of «; (c)
Tracer variance o2 for (from bottom) a=1.0,0.7,0.5,0.3,0.1,0.

are time dependent and have the property that after some
transience, they fluctuate around a mean value, without secu-
lar trend. This can be seen in Fig. 2.

In Fig. 3, for «=0.1, the concentration field at late time
looks similar to that for a=0. This is because for small «, the
effect of advection is diffusive, with small movements of
particles giving rise to bubbles with jagged boundaries, but
no breakup. The probability distribution function (PDFs) of

the concentration for a€[0,0.01,...,0.2] have the same
structure. Nevertheless, it is clear from Fig. 2(b) that coars-
ening arrest takes place for @=[0.01,...,0.2], in contrast to

a=0. As «a increases, the bubbles become less and less evi-
dent. For large a, we see regions containing filaments of
similar concentration. After a period of transience, the free
energy F, the mean wave number k;, and the variance o2
fluctuate around mean values, confirming the existence of the
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steady state. The bubble size is extracted from the quantity
0°/F, where the overbar denotes a time average over the
fluctuations. We investigate how the mean lengths scale with
the Lyapunov exponent \. o

In Fig. 4 we see that for small \ the proxy o?/F for
bubble radius scales with the LS exponent as \™!/3, suggest-
ing an equilibrium bubble size on this scale. For larger \, the
hyperdiffusion breaks up these bubbles and mixes the fluid.
This process leads to a faster than algebraic decay of bubble
size, visible in the figure. Other measures of the bubble size,
such as the mean wave number &, or the quantity 1—¢? do
not possess a clear scaling law. For example, in Fig. 4(b) we
plot In k; against In N. The exponent changes over the three
decades of data, indicating that the wave number k; does not
have a clear scaling law with the Lyapunov exponent A.
However, the dependence of the time-averaged free energy

on the Lyapunov exponent has the power law behavior F
~\%26 over three decades, suggesting a genuine power law
relationship. The Batchelor wave number k,=[(|Vc|?)/
(c*]"? [27] also possesses a clean power law over three
decades.

Furukawa [30] shows that in a situation of dynamical
equilibrium characterized by a single length scale, the poten-
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FIG. 3. (Color online) The steady-state
concentration field after r=30000 time steps
for [(a)—(e)] stirring amplitudes o
=0.1,0.3,0.5,0.7,1.0.

tial part of the free energy F,=7 [d*x(c>~1)? should be in
equipartition with the kinetic part Fi,=3 [ d*xy|Ve[>. In Fig. 4
we see that this is not the case when the bubbles start to
break up as the stirring is increased. This is an indication of
a crossover between the bubbly regime and the well-mixed
one in which the variance is reduced by stirring.

In Fig. 4 the breakdown in the power law relationship
02/ F~\"'7 for large stirring amplitudes suggests the cross-
over between a bubbly regime and a diffusive one. Another
way of seeing the transition between these regimes is to
study the stationary probability distribution function (PDF)
of the field c(x,f). We show this in Fig. 5. For small values
of a we note that the PDF has sharp peaks at +1, indicating
the effectiveness of phase separation at these stirring ampli-
tudes. For a=1 however, the PDF has a Gaussian core, in-
dicating that genuine mixing by advection and hyperdiffu-
sion is taking place. For intermediate values of « the PDF is
a combination of these two different distributions of concen-
tration.

IV. A ONE-DIMENSIONAL EQUILIBRIUM PROBLEM

Having observed the crossover between the bubbly and
the well-mixed regimes, we study a one-dimensional model
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FIG. 4. (Color online) (a) The plot of In(¢?/F) against In \ suggests the scaling law ®/F ~\~'3 for small stirring amplitudes while for
large amplitudes this proxy for the bubble radius decays exponentially with increasing Lyapunov exponent. (b) Graph of In k; against In \,

with approximate power law behavior k_1~

NO21 The exponent is not the same over the entire range, however. (c) The graph of In F exhibits

a much cleaner power law behavior F ~\%20, (d) The Batchelor wave number k,=[{|Vc|%)/(c2)]"/? also possesses a clear power law behavior

k_b~)\oA15.

to shed further light on the process by which this occurs.

We examine the archetypal hyperbolic flow v=(-\x,\y),
with strain rate N. This flow tends to homogenize the con-
centration in the y direction through stretching. At late times
the problem then becomes one dimensional,

dc dc
— = )\x— —D

A
o PelGRE yD;ﬁ. (20)

Scaling lengths by \«"Ty and restricting to the steady case, Eq.
(20) becomes

dx dx* @1

2 4

—)\( y)xd_c = ;2(6 -c)— E
This equation is invariant under the parity change x — —x and
so we seek odd and even solutions. Thus we may restrict the
solution to the half-line [0,%). We choose the bubble bound-
ary conditions c(x®)=—1+ 6, ¢'(x2)=0, ¢'(0)=0, The addi-
tion of the small positive constant ¢ in the boundary condi-
tions makes a bubble solution possible in the limit A —0. In
this limit, Eq. (21) reduces to

d2< 5 d%)
—5|co=c-— =0,

dx? dx? 22)

with first integral

1{dc\? 1
—(—C) +Bc-—(c?-1)%=
2 \dx 4

V(c)

where E and B are arbitrary. By setting B=Bs=(-1+0)°
—(1-06) and E=V(-1+6) we obtain the bubble solution

B2 L‘” \/v( 146) =Byt~ (c —1)?

where the radicand is nonnegative on the interval of integra-
tion. The bubble width is given by the unique positive zero
of the function c(x).

By measuring lengths in terms of the diffusion lengthscale
(yD/\)Y4, the large-\ limit of Eq. (21) reduces to the
advection-hyperdiffusion equation

de d*

xdx st 23)

Restoring the dimensional units, the general solution is given
in terms of generalized Airy functions [31],
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FIG. 5. (Color online) Normal-
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steady state. (a), (b) Segregation-
1.5¢ dominated flow (@=0.1,0.3); (c),
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1t regime (a=0.5,0.7); (e¢) Hyper-
diffusive regime (a=1); (f) Semi-
0.5t log plot of PDF for a=1. Note
Gaussian core and exponential de-
9 , cay down to the cutoff at [¢|=<1.
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x 3 pendence of the length scale in the diffusive limit which
c(x) =c(0) + f dX'E Cv,(x"); suggests that we are justified in using it.
0 =0 We mention briefly an alternative set of boundary condi-
. . tions: let c¢(x%)==+1 and ¢'(x©)=0 (the & term is unimpor-
v,(x) =€ f exp{ €t — ! } dt (24) tant now). This corresponds to a front. At small \, this equa-
14 14 14 4 . . . . . ..
0 4N/yD tion contains information about the width of the transition

where the constants C, sum to zero and the phases e,
=exp(imv/2) are the fourth roots of unity. By inspection of
the phases, we see that Eq. (23) lacks a bubble solution,
although it does have a front solution. Since it is the segre-
gation term which makes the existence of stationary bubbles
possible, it is not surprising that no stationary bubble exists
when this term is set to zero. Thus as A—c the solution
presented in Fig. 6 tends asymptotically to the function

(1—5)+f [vi(x") = (1 = Doa(x") = iv5(x") Jdx”,
0

which diverges for x — —o. Nevertheless, this solution on the
restricted interval [0, ) provides the correct parametric de-

regions. Since in this limit, the front solution is independent
of \ and given by Eq. (22), there is no new information here.
At large A\ this solution has the interpretation of being the
transition layer between filaments, the width of the layer giv-
ing the width of the filament. In this limit, the solution is
given by [y[v,(x")—vs(x")]dx’. Thus, the front boundary
conditions do not give any further information about the
bubble/filament structures.

In Fig. 6 we provide the relation between the strain rate A
and the bubble width and the bubble free energy. For small A
these quantities depend only weakly on the strain rate while
for large N\ the bubble width scales as N4 in accordance
with Eq. (15). It is not clear if the free energy also has this
asymptotic dependence. For large A, the free energy equipar-
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FIG. 6. (Color online) (a) Bubble width as a function of the
strain rate \; (b) Bubble free energy as a function of the strain rate;
(c) Bubble profile for (from right to left) A=0.001,0.01,0.1,1,10.

tition rule is broken, and the potential part dominates, in
agreement with the results of Sec. III.

Moreover, Fig. 6 indicates that the bubble width decreases
as the strain rate increases. Thus, the length scale over which
¢ is constant diminishes with increasing A so that for suffi-
ciently large A, the bubble size is less than or of the order of
the transition region size. That is, (yD/\)"*=v'2, so \,
=D/ 7. On these scales, only diffusion is important and hence
the tendency to form bubbles is overcome. Thus, the one-
dimensional model explains at least qualitatively why the
crossover from the bubbly to the diffusive regime occurs.
This prediction for A, is in agreement with the prediction in
Sec. II and is in approximate agreement with the numerical
simulations, where the crossover occurred at a=1 (A\=0.2,
™D=17).

Finally we note that the concentration profile takes values
|c|>1 in some places, a consequence of Eq. (21) lacking a
maximum principle, in contrast (say) to the advection-
diffusion equation. This is consistent with the numerical re-
sults of Sec. IV, where we find max, . y|c(x,7)|> 1. As men-
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tioned by Gajewski and Zacharias [5], this superabundance
of one binary fluid element is unreasonable on physical
grounds, pointing to a shortcoming in the advective CH
model. However, we shall see in the next section that the
qualitative features of this simple model and the more real-
istic variable-mobility model are in agreement, suggesting
that the simpler model gives an adequate description of ad-
vective phase-separation dynamics.

V. THE VARIABLE-MOBILITY CASE

In order to gain further insight into the dependence of the
bubble size on the Lifshitz-Slyozov and Lyapunov expo-
nents, we study the variable-mobility Cahn-Hilliard equation
[32],

%+v~Vc:V-[D(c)VM]’ (25)

where as before u=f)(c)—yV2c. By introducing this addi-
tional feature, we recover a system that, at least in the case
without flow, has a solution c(x,7) confined to the range
[-1,1] [6].

We specify the functional form of the mobility as follows:
D(c) = Dy(1 = 7c?), (26)

fixing #7=1. This modification corresponds to interface-
driven coarsening because inside bubbles (c=+1) the mobil-
ity is zero. For other values of 7 we have a mixture of bulk-
and interface-driven coarsening. This equation has been in-
vestigated by Bray and Emmott [33] for v=0, in an
evaporation-condensation picture. They show that the typical
bubble size R,(¢) grows as 1'/4, a result limited to dimensions
greater than two. Numerical simulations [3] suggest that this
growth law also holds in two dimensions. We couple the
modified segregation dynamics to the sine flow.

For v=0, we obtain the growth law for the scale
R,=1/k,;, namely R, ~*?%*. The growth exponent is close
to the value 1/4 predicted by the LS theory. In addition, we
obtain the free energy decay laws F~ 2% again close to
the LS value. Thus, as in the constant mobility case, a de-
scription of the length scales in the system can be given in
terms of the bubble energy or in terms of Ry, with identical
results.

Because the variable mobility calculation is computation-
ally slower, we perform the numerical experiments with flow
at lower resolution. We do not anticipate that this will change
the results, because in integrations of the constant-mobility
equations at resolution 2567 the scaling exponents were un-
affected. Switching on the chaotic flow, we observe a steady
state characterized by fluctuation of the free energy, wave
number k;, and variance o2 around mean values. As in the
constant mobility case, the time-averaged free energy and
time-averaged Batchelor scale possess clear scaling laws,
while the mean wave number k; does not. For small A, the
proxy for bubble radius o/F scales approximately as A~'74,
suggesting a decay of bubble radius according to the LS
exponent. Thus the analogous result of Sec. III is not fortu-
itous. For large A\ this quantity decays exponentially to zero
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suggests the scaling law o2/F ~X\~"* for small stirring amplitudes,
while for large amplitudes this proxy for the bubble radius decays
exponentially with increasing Lyapunov exponent. (b) The graph of

In F exhibits power law behavior F~\%2!, The predominance of
kinetic free energy over potential free energy at large \ is visible.

at a rate (with respect to \) close to that of the constant
mobility system. In each case, the fit of the data is not as
good as the constant mobility case, the computational error
being larger here because we have run the simulations at
resolution 256%. We present these results in Fig. 7.

The results are an exact replica of those for the constant
mobility case. Thus, the arrest of bubble growth for small A
is a genuine phenomenon whose behavior depends on the LS

PHYSICAL REVIEW E 75, 016216 (2007)

exponent of the corresponding unstirred dynamics. The mix-
ing at large A\ is identical to that for which the mobility is
constant. Thus, while the variable mobility model is more
realistic than its constant-mobility counterpart, their proper-
ties with regard to mixing are the same.

VI. CONCLUSIONS

We have shown how, in the presence of an external cha-
otic stirring, the coarsening dynamics of the Cahn-Hilliard
equation are arrested and bubbles form on a particular length
scale. The system reaches a steady state, characterized by the
fluctuation of the free energy F, the variance o2, and the
wave number k; around mean values. A measure of the typi-
cal bubble size is given by the time average of o?/F. For
sufficiently large stirring intensities, the bubbles diminish in
prominence, to be replaced by filament structures. These are
due to the combination of the advection and hyperdiffusion
terms in the CH demixing mechanism. In this regime, the
concentration tends to homogenize, so that the stirring stabi-
lizes the previously unstable mixed state.

We have explained with a one-dimensional model how
this transition arises and how the filament width in the ho-
mogeneous regime depends on the Lyapunov exponent of the
chaotic flow. This latter investigation exhibits the super
abundance of one binary fluid element at a particular location
in space, which we reject as unreasonable. In this result, we
see how the lack of a maximum principle for the constant-
mobility CH equation limits its physical relevance. In the
case of no flow this difficulty was overcome by the addition
of a variable mobility [6]. However, the hyperdiffusive re-
gime identified in our simulations is robust in the sense that
it is present in both the constant and the more realistic vari-
able mobility cases. We therefore expect to see this remixing
phenomenon in real binary fluids.
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